The exact value of the position of the rider after the carousel rotates 5Ο/12 is 5 (-β2 + β6), 5(β2 + β6).
The position
Since the position of the carousel is (x, y) = (20cosΞΈ, 20sinΞΈ) and we need to find the position when ΞΈ = 5Ο/12 = 5Ο/12 Γ 180 = 75Β°
So, substituting the value of ΞΈ into the positions, we have
(20cos75Β°, 20sin75Β°)
The value of 20cos75Β°
20cos75Β° = 20cos(45 + 30)
Using the compound angle formula
cos(A + B) = cosAcosB - sinAsinB
With A = 45 and B = 30
cos(45 + 30) = cos45cos30 - sin45sin30
= 1/β2 Γ β3/2 - 1/β2 Γ 1/2
= 1/2β2(β3 - 1)
= 1/2β2(β3 - 1) Γ β2/β2
= β2(β3 - 1)/4
= (β6 - β2)/4
= (-β2 + β6)/4
So, 20cos75Β° = 20 Γ (-β2 + β6)/4
= 5 (-β2 + β6)
The value of 20sin75Β°
20sin75Β° = sin(45 + 30)
Using the compound angle formula
sin(A + B) = sinAcosB + cosAsinB
With A = 45 and B = 30
sin(45 + 30) = sin45cos30 + cos45sin30
= 1/β2 Γ β3/2 + 1/β2 Γ 1/2
= 1/2β2(β3 + 1)
= 1/2β2(β3 + 1) Γ β2/β2
= β2(β3 + 1)/4
= (β6 + β2)/4
= (β2 + β6)/4
So, 20sin75Β° = 20 Γ (β2 + β6)/4
= 5(β2 + β6)
Thus, (20cos75Β°, 20sin75Β°) = 5 (-β2 + β6), 5(β2 + β6).
So, the exact value of the position of the rider after the carousel rotates 5Ο/12 is 5 (-β2 + β6), 5(β2 + β6).
Learn more about position here:
https://brainly.com/question/11001232