Respuesta :
The angular velocity by definition is given by:
 w = rev / t
 Where:
 rev: revolutions
 t: time
 Substituting values we have:
 w = (6 * (2 * pi)) / (12)
 w = 3.141592654 rad / s
 Answer:
 the average angular velocity of the spinner, in radians per second, for the 12-second interval is:
 w = 3.141592654 rad / s
 w = rev / t
 Where:
 rev: revolutions
 t: time
 Substituting values we have:
 w = (6 * (2 * pi)) / (12)
 w = 3.141592654 rad / s
 Answer:
 the average angular velocity of the spinner, in radians per second, for the 12-second interval is:
 w = 3.141592654 rad / s
Answer:
3.14 rad/s is the average angular velocity of the spinner.
Step-by-step explanation:
Average angular velocity :
[tex]\omega=\frac{\Delta \theta }{\Delta t}[/tex]
Change in angular displacement Δθ=  6 revolutions
1 revolution = 360°
6 revolutions = 6 × 360° = 2160° = 37.70 rad
(1°= 0.0174533 radians )
Change in time Δt=  12 s
Average angular velocity  of the spinner =
[tex]=\frac{37.70 rad}{12 s}=3.14 rad/s[/tex]
3.14 rad/s is the average angular velocity of the spinner.