Respuesta :
The first thing to do is a free-body diagram in a vertical direction.
 We have then:
 ma = mg - kv ^ 2
 Where,
 k: proportionality constant.
 For the terminal velocity, we have:
 a = 0
 Clearing the value of v:
 v = root (mg / k)
 v ^ 2 = mg / k
 The ball's speed is half its terminal speed:
 v = root (mg / 4k)
 v ^ 2 = mg / 4k
 going up
 ma = -mg - kv ^ 2
 a = -g -gk / 4k
 a = -g - g / 4
 a = -5g / 4
 a = -5g / 4
 Going down
 ma = -mg + kv ^ 2
 a = -g + gk / 4k
 a = -g + g / 4
 a = -3g / 4
 a = -3g / 4
 We have then:
 ma = mg - kv ^ 2
 Where,
 k: proportionality constant.
 For the terminal velocity, we have:
 a = 0
 Clearing the value of v:
 v = root (mg / k)
 v ^ 2 = mg / k
 The ball's speed is half its terminal speed:
 v = root (mg / 4k)
 v ^ 2 = mg / 4k
 going up
 ma = -mg - kv ^ 2
 a = -g -gk / 4k
 a = -g - g / 4
 a = -5g / 4
 a = -5g / 4
 Going down
 ma = -mg + kv ^ 2
 a = -g + gk / 4k
 a = -g + g / 4
 a = -3g / 4
 a = -3g / 4
a. When it is moved up a = -5g / 4
b. When it is moved back down a  = -3g / 4
Calculation of y-component of the ball's acceleration:
Here
ma = mg - kv ^ 2
Where,
k: proportionality constant.
For the terminal velocity, we have:
a = 0
Now Clearing the value of v:
v = root (mg / k)
v ^ 2 = mg / k
The ball's speed should be half its terminal speed.
v = root (mg / 4k)
v ^ 2 = mg / 4k
a.
going up
ma = -mg - kv ^ 2
a = -g -gk / 4k
a = -g - g / 4
a = -5g / 4
b.
Going down
ma = -mg + kv ^ 2
a = -g + gk / 4k
a = -g + g / 4
a = -3g / 4
learn more about speed here: https://brainly.com/question/21526256