Respuesta :
to compare the triangles, first we will determine the distances of each side
Distance = ((x2-x1)^2+(y2-y1)^2)^0.5SolvingÂ
∆ABC A(11, 6), B(5, 6), and C(5, 17)
AB = 6 units  BC = 11 units AC = 12.53 units∆XYZ X(-10, 5), Y(-12, -2), and Z(-4, 15)
XY = 7.14 units  YZ = 18.79 units XZ = 11.66 units
∆MNO M(-9, -4), N(-3, -4), and O(-3, -15).
MN = 6 units  NO = 11 units MO = 12.53 units∆JKL J(17, -2), K(12, -2), and L(12, 7).
JK = 5 units  KL = 9 units JL = 10.30 units
∆PQR P(12, 3), Q(12, -2), and R(3, -2)
PQ = 5 units  QR = 9 units PR = 10.30 unitsÂ
Therefore
we have the ∆ABC  and the ∆MNO Â
with all three sides equal ---------> are congruent Â
we have the ∆JKL and the ∆PQRÂ
with all three sides equal ---------> are congruent Â
 let's check
 Two plane figures are congruent if and only if one can be obtained from the other by a sequence of rigid motions (that is, by a sequence of reflections, translations, and/or rotations).
 1)    If ∆MNO  ---- by a sequence of reflections and translation --- It can be obtained ------->∆ABCÂ
 then ∆MNO ≅ ∆ABC Â
 a)     Reflexion (x axis)
The coordinate notation for the Reflexion is (x,y)---- >(x,-y)
∆MNO M(-9, -4), N(-3, -4), and O(-3, -15).
M(-9, -4)----------------->Â M1(-9,4)
N(-3, -4)------------------ > N1(-3,4)
O(-3,-15)----------------- > O1(-3,15)
 b)     Reflexion (y axis)
The coordinate notation for the Reflexion is (x,y)---- >(-x,y)
∆M1N1O1 M1(-9, 4), N1(-3, 4), and O1(-3, 15).
M1(-9, -4)----------------->Â M2(9,4)
N1(-3, -4)------------------ > N2(3,4)
O1(-3,-15)----------------- > O2(3,15)
 c)  Translation
The coordinate notation for the Translation is (x,y)---- >(x+2,y+2)
∆M2N2O2 M2(9,4), N2(3,4), and O2(3, 15).
M2(9, 4)----------------->Â M3(11,6)=A
N2(3,4)------------------ > N3(5,6)=B
O2(3,15)----------------- > O3(5,17)=C
∆ABC A(11, 6), B(5, 6), and C(5, 17)
 ∆MNO reflection------- >  ∆M1N1O1 reflection---- > ∆M2N2O2  translation -- --> ∆M3N3O3Â
 The ∆M3N3O3=∆ABCÂ
Therefore ∆MNO ≅ ∆ABC  - > check list 2)    If ∆JKL -- by a sequence of rotation and translation--- It can be obtained ----->∆PQRÂ
 then ∆JKL ≅ ∆PQR Â
 d)    Rotation 90 degree anticlockwise
The coordinate notation for the Rotation is (x,y)---- >(-y, x)
∆JKL J(17, -2), K(12, -2), and L(12, 7).J(17, -2)-----------------> J1(2,17)
K(12, -2)------------------ > K1(2,12)
L(12,7)----------------- > L1(-7,12)
 e)     translation
The coordinate notation for the translation is (x,y)---- >(x+10,y-14)
∆J1K1L1 J1(2, 17), K1(2, 12), and L1(-7, 12).
J1(2, 17)----------------->Â J2(12,3)=P
K1(2, 12)------------------ > K2(12,-2)=Q
L1(-7, 12)----------------- > L2(3,-2)=R
 ∆PQR P(12, 3), Q(12, -2), and R(3, -2)
 ∆JKL rotation------- >  ∆J1K1L1 translation -- --> ∆J2K2L2=∆PQRÂ
Therefore ∆JKL ≅ ∆PQR  - > check list