Respuesta :
The solution is [tex] \frac{1}{3} [/tex]
Now, from the given diagram, the length of AQ = 4units (on the positive integer line)
And, the length of WQ = 8units (at the negative integer line) + 4 units (on the positive integer line)
Now, [tex] \frac{AQ}{WQ} = \frac{4}{12} [/tex]
⇒ [tex] \frac{AQ}{WQ} = \frac{1}{3} [/tex] Ans.
Now, from the given diagram, the length of AQ = 4units (on the positive integer line)
And, the length of WQ = 8units (at the negative integer line) + 4 units (on the positive integer line)
Now, [tex] \frac{AQ}{WQ} = \frac{4}{12} [/tex]
⇒ [tex] \frac{AQ}{WQ} = \frac{1}{3} [/tex] Ans.
