Respuesta :
Answer: Please see attachment.
Solution:
We need to match the column using column proof. Please see the attachment for matching column.
In ΔDOC and ΔBOA
   DO=BO        (Given)
 ∠DOC=∠BOA      (Vertically Opposite angle)
   OC=OA        (Given)
∴  ΔDOC ≅ ΔBOA  by  SAS congruence property
   ∠1=∠2  and  AB=DC   By CPCTE
Thus, AB||DC  (∠1 and ∠2 are alternate angles equal then lines parallel)
ABCD is a parallelogram. ( If two sides equal and parallel then a parallelogram.
Below is matched table.
DO = OB, AO = OC ⇒ Given   Â
∠DOC =∠AOB    ⇒ Vertical angles are equal
∆COD ≅ ∆AOB ⇒  SAS       CPCTE
∠1 = ∠2,  AB = DC ⇒  CPCTE     Â
AB||DC         ⇒  If alternate interior angles =, then lines parallel
ABCD is a parallelogram ⇒ If two sides = and ||, then a parallelogram
Please see attachment for figure and matching. Â Â Â

Answer:
Answer: Please see attachment.
Solution:
We need to match the column using column proof. Please see the attachment for matching column.
In ΔDOC and ΔBOA
   DO=BO        (Given)
∠DOC=∠BOA      (Vertically Opposite angle)
   OC=OA        (Given)
∴  ΔDOC ≅ ΔBOA  by  SAS congruence property
  ∠1=∠2  and  AB=DC   By CPCTE
Thus, AB||DC  (∠1 and ∠2 are alternate angles equal then lines parallel)
ABCD is a parallelogram. ( If two sides equal and parallel then a parallelogram.
Below is matched table.
DO = OB, AO = OC ⇒ Given   Â
∠DOC =∠AOB    ⇒ Vertical angles are equal
∆COD ≅ ∆AOB ⇒  SAS       CPCTE
∠1 = ∠2,  AB = DC ⇒  CPCTE     Â
AB||DC         ⇒  If alternate interior angles =, then lines parallel
ABCD is a parallelogram ⇒ If two sides = and ||, then a parallelogram
Please see attachment for figure and matching. Â Â Â
Step-by-step explanation: