If Rolle's Theorem can be applied, find all values of c in the open interval (a, b) such that f '(c) = 0. (Enter your answers as a comma-separated list. If Rolle's Theorem cannot be applied, enter NA.)

Since we can apply Rolle's Theorem:
[tex]\begin{gathered} f^{\prime}(x)=-\sin (x) \\ so\colon \\ f^{\prime}(x)=0 \\ -\sin (x)=0 \end{gathered}[/tex]Take the inverse sine of both sides:
[tex]\begin{gathered} x=\sin ^{-1}(0) \\ x=\pi n \\ n\in\Z \end{gathered}[/tex]Since it is for the interval:
[tex]\lbrack\pi,3\pi\rbrack[/tex]The solutions are:
[tex]x=\frac{3\pi}{2},\frac{5\pi}{2}[/tex]Answer:
[tex]\begin{gathered} c=\frac{3\pi}{2},\frac{5\pi}{2} \\ or \\ c\approx4.71,7.85 \end{gathered}[/tex]