The functions f(x), g(x), and h(x) are shown below. Select the option that represents the ordering of the functions according to their average rates of change on the interval 2−2≤x≤2 goes from least to greatest.


SOLUTION:
The formula for the average rate of change of a function is;
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]For f(x);
[tex]\begin{gathered} m=\frac{30-(-10)}{2-(-2)} \\ m=10 \end{gathered}[/tex]For (x):
[tex]\begin{gathered} m=\frac{10-46}{2-(-2)}= \\ m=-9 \end{gathered}[/tex]For h(x):
[tex]\begin{gathered} m=\frac{h(2)-h(-2)}{2-(-2)} \\ m=\frac{(-2^2-5(2)+25)-(-(-2)^2-5(-2)+25)}{2-(-2)} \\ m=-5 \end{gathered}[/tex]From this calculation, ranking the average rateof change from least to greatest, swe have;
[tex]g(x),h(x),f(x)[/tex]