Respuesta :

Given:

The equation is

[tex]2x^{\frac{5}{3}}-18x=0[/tex]

Required:

Find the non-zero solution to the equation.

Explanation:

The given equation is

[tex]2x^{\frac{5}{3}}-18x=0[/tex]

Rewrite the equation as:

[tex]2x^{\frac{5}{3}}=18x[/tex]

Divide both sides by 2.

[tex]x^{\frac{5}{3}}=9x[/tex]

Take cube on both sides.

[tex]\begin{gathered} (x^{\frac{5}{3}})^3=(9x)^3 \\ x^5=729x^3 \\ x^5-729x^3=0 \end{gathered}[/tex]

Take out common x

[tex]x^3[/tex][tex]x^3(x^2-729)=0[/tex]

Find the factor by using the formula

[tex]a^2-b^2=(a-b)(a+b)[/tex][tex]\begin{gathered} x^3(x-27)(x+27)=0 \\ x=0,27,-27 \end{gathered}[/tex]

Final Answer:

Thus the non-zero solutions to the given equation are x =27, -27.