Respuesta :

Take into account that the relative density is given by:

[tex]\rho_{\text{rel}}=\frac{\rho}{\rho_{\text{water}}}[/tex]

where ρ, in this case, is the density of the steel and ρwater is the density of water (1000 kg/m^3).

The density of the steel is:

[tex]\rho=\frac{\text{mass}}{\text{volume}}[/tex]

Based on table 3, you have:

mass = 50.7 g = 0.0507 kg

volume = 0.0000063 m^3

[tex]\rho=\frac{0.0507kg}{0.0000063m^3}\approx8047.62\frac{kg}{m^3}[/tex]

Then, for the relative density you obtain:

[tex]\rho_{\text{rel}}=\frac{\rho}{\rho_{\text{water}}}=\frac{8047.62\frac{kg}{m^3}}{1000\frac{kg}{m^3}}\approx8.048[/tex]

Hence, the relative density of steel is 8.048