If the rate of inflation is 2.5% per year, the future price P(T) in dollars of a certain item can be modeled by the following exponential function, where T is the number of years from today

Solution:
The future price p(t), in dollars, can be modelled by the exponential function;
[tex]p(t)=800(1.025)^t[/tex](a) The current price is;
[tex]\begin{gathered} t=0; \\ \\ p(0)=800(1.025)^0 \\ \\ p(0)=800(1) \\ \\ p(0)=800 \end{gathered}[/tex]ANSWER: $800
(b) The price 8 years from today;
[tex]\begin{gathered} t=8 \\ \\ p(8)=800(1.025)^8 \\ \\ p(8)=800(1.2184) \\ \\ p(8)=974.72 \\ \\ p(8)\approx975 \end{gathered}[/tex]ANSWER: $975