f(x) = log x + 2 and g(x) = log (1/x). Find (f – g) (x).log x -2 – log (1/x)22 log x + 2(2/log x) + 1

We have to find (f-g)(x) given that f(x) = log x + 2 and g(x) = log(1/x).
We can find it as:
[tex]\begin{gathered} (f-g)(x)=f(x)-g(x) \\ (f-g)(x)=\log x+2-\log(\frac{1}{x}) \\ (f-g)(x)=\log x+2-(\log1-\log x) \\ (f-g)(x)=\log x+2-0+\log x \\ (f-g)(x)=2\log x+2 \end{gathered}[/tex]Answer: 2log(x) + 2