6. Which of the following statements must be true when 0 < a < 1 ?. sqrt a a >1II. 2a < 1III. a ^ 2 - a ^ 3 < 0A. I onlyB. III onlyC.I and III onlyD.II and III only

Given:
The following inequalities:
[tex]\frac{\sqrt[]{a}}{a}>1\rightrightarrows\frac{1}{\sqrt[]{a}}[/tex]When 0 < a < 1
So, the denominator will be always < 1
so, all the fraction will be greater than 1
So, the first inequality True
[tex]\begin{gathered} 2a<1 \\ a<\frac{1}{2} \end{gathered}[/tex]when 0 < a < 1
The inequality will be true as a < 1/2
The inequality will be wrong when a >1/2
So, the second inequality is wrong
[tex]\begin{gathered} a^2-a^3<0 \\ a^2(1-a)<0 \end{gathered}[/tex]The inequality true when a >1
so, for 0 < a < 1, the inequality is wrong
So, the answer will be option A. I only