ellusRotate the triangle 270° counterclockwisearound the origin and enter the newcoordinates.Enter thenumber thatbelongs in thegreen boxA (31.0 A(1,-1)B(4,-2)C II )BC.0D 2.-4)

A rotation of 270° counterclockwise is given by the following rule:
[tex](x,y)\rightarrow(y,-x)[/tex]Apply that rule to the coordinates of A, B, and C to find the coordinates of A''', B''', and C'''.
[tex]\begin{gathered} A(1,-1)\rightarrow A^{\prime\prime\prime}(-1,-1) \\ B(4,-2)\rightarrow B^{\prime\prime\prime}(-2,-4) \\ C(2,-4)\rightarrow C^{\prime\prime\prime}(-4,-2) \end{gathered}[/tex]