ANSWER:
2415 meters
STEP-BY-STEP EXPLANATION:
Given:
Initial horizontal velocity (ux) = 138 m/s
Initial vertical velocity (uy) = 0 m/s
Height (h) = 1500 meters
The first thing is to calculate the time it takes for the airplane to reach the ground, just like this:
[tex]\begin{gathered} h=u_yt+\frac{1}{2}at^2 \\ \\ \text{ we replacing} \\ \\ 1500=0\cdot t+\frac{1}{2}(9.8)t^2 \\ \\ 4.9t^2=1500 \\ \\ t^2=\frac{1500}{4.9} \\ \\ t=\sqrt{\frac{1500}{4.9}} \\ \\ t=17.5\text{ sec} \end{gathered}[/tex]Therefore, the horizontal distance would be:
[tex]\begin{gathered} x=u_x\cdot t \\ \\ \text{ we replacing} \\ \\ x=138\cdot17.5 \\ \\ x=2415\text{ m} \end{gathered}[/tex]Therefore, the horizontal distance is 2415 meters