Solve the equation to find the value of x. log2(5x-4)=4

The given equation is
[tex]\log _2(5x-4)=4[/tex]To solve for x, the logarithm to indices relationship will be applied
That is
[tex]\begin{gathered} \log _ab=x \\ \Rightarrow b=a^x \end{gathered}[/tex]Hence
[tex]\begin{gathered} \log _2(5x-4)=4 \\ \Rightarrow5x-4=2^4 \end{gathered}[/tex]This is simplified to get
[tex]\begin{gathered} 5x-4=16 \\ 5x=16+4 \\ 5x=20 \\ x=\frac{20}{5} \\ x=4 \end{gathered}[/tex]Therefore, the value of x = 4