Use the change of base formula to evaluate the expression then convert it to a logarithm in base eight round to the nearest thousandth

Recall that the change of base formula for logarithms is:
[tex]\log_a(b)=\frac{\log_x(b)}{\log_x(a)}.[/tex]Using the change of base formula for logarithms to the given logarithm we get:
[tex]\log_354=\frac{\log_8(54)}{\log_8(3)}.[/tex]Therefore:
[tex]\log_3(54)=3.631.[/tex]And:
[tex]undefined[/tex]