We have the next information
m=7.29 kg
v=3 m/s
r=11cm=0.11m
We can find the kinetic energy using the next formula
[tex]KE=\frac{1}{2}mv^2+\frac{1}{2}Iw^2[/tex]I is the moment of inertia
w is the angular velocity
First, we need to calculate the moment of inertia
[tex]I=\frac{2}{5}mr^2[/tex][tex]I=\frac{2}{5}(7.29)(0.11)^2=0.0353kgm^2[/tex]Then for the angular velocity
[tex]\omega=\frac{v}{r}[/tex][tex]\omega=\frac{3}{0.11}=27.28[/tex]then we will substitute the values in the kinetic energy formula
[tex]KE=\frac{1}{2}(7.29)(3)^2+\frac{1}{2}(0.0353)(27.28)^2[/tex][tex]KE=45.9J[/tex]The total kinetic energy is 45.9 J