a. Revenue
[tex]R(x)=n(x)\cdot p(x)[/tex]
Substitute n(x) and p(x)
[tex]\begin{gathered} R(x)=x\cdot(8.5-0.05x) \\ \text{Simplify} \\ R(x)=8.5x-0.05x^2 \end{gathered}[/tex]
Answer a:
[tex]R(x)=8.5x-0.05x^2[/tex]
b. Cost
[tex]\begin{gathered} C(x)=f(x)+v(x) \\ So \\ C(x)=190+2x \end{gathered}[/tex]
Answer b:
[tex]C(x)=190+2x[/tex]
c. Profit
[tex]\begin{gathered} P(x)=R(x)-C(x) \\ P(x)=8.5x-0.05x^2-(190+2x) \end{gathered}[/tex]
Simplify
[tex]\begin{gathered} P(x)=8.5x-0.05x^2-190-2x \\ P(x)=6.5x-0.05x^2-190 \\ \operatorname{Re}-order \\ P(x)=-0.05x^2+6.5x-190 \end{gathered}[/tex]
Answer c:
[tex]P(x)=-0.05x^2+6.5x-190[/tex]
d. Average cost
[tex]\begin{gathered} \bar{C}(x)=\frac{C(x)}{n(x)} \\ \bar{C}(x)=\frac{190+2x}{x} \end{gathered}[/tex]
Answer d:
[tex]\bar{C}(x)=\frac{190+2x}{x}[/tex]