Study the equations:
f(x)=11x-5
g(x)=-2x-4
What is h(x) = f(x) g(x)

Answer:
[tex]h(x)=-22x^2-34x+20[/tex]
Step-by-step explanation:
Given functions:
[tex]\begin{cases}f(x)=11x-5\\g(x)=-2x-4\end{cases}[/tex]
Function composition is an operation that takes two functions and produces a third function.
Therefore, the given composite function f(x)g(x) means to multiply the function g(x) by the function f(x):
[tex]\begin{aligned}\implies h(x)&=f(x)g(x)\\& = (11x-5)(-2x-4)\\&=11x(-2x-4)-5(-2x-4)\\&=11x(-2x)+11x(-4)-5(-2x)-5(-4)\\&=-22x^2-44x+10x+20\\&=-22x^2-34x+20\end{aligned}[/tex]
Therefore:
[tex]\boxed{h(x)=-22x^2-34x+20}[/tex]