The data set below has 7 values. Find the mean absolute deviation for the data set. If necessary, round your answer to the nearest hundredth. 20, 16, 21, 16, 22, 16, 15

Answer:
2.57
Step-by-step explanation:
The mean absolute deviation(MAD) of a data set is given by the formula
[tex]$ MAD =\frac{1}{n} \sum_{i=1}^n |x_i-\bar{x}|$[/tex]
n = number of data set values. Here n=7
[tex]\bar{x}=[/tex]mean of the data set values = [tex](20+16+21+16+22+16+ 15)/7 = 126/7 = 18[/tex]
[tex]x_{i}[/tex] are the n individual values
Substituting in the summation we get
MAD = [tex]\frac{1}{7} |20-18| + |16-18| + |21-18| + |16-18| + |22-18| + |16-18| + |15-18|\\= (2 + 2 + 3 + 2 + 4+ 2 + 3)/7\\= 18/7 = 2.571428 \\[/tex]
Rounded to the nearest hundredth, the answer is 2.57