In triangle VWX, VW=VX. If measure of angle V= 50, what are the measures of angles W and X?

Answer: ∠W=∠X=65°
Step-by-step explanation:
The isosceles triangle theorem says that if two sides of a triangle are congruent then the angles opposite to these sides are congruent.
Given: In triangle VWX, VW=VX.
⇒ ∠W=∠X [By isosceles theorem]................................(1)
Using angle sum property in ΔVWX, we get
∠V+∠W+∠X=180°
If measure of ∠V= 50°
⇒ 50°+∠W+∠W=180°.................................[Using (1)]
⇒ 2∠W=180°-50°
⇒ 2∠W=130°
⇒ ∠W=65°
Therefore, the measure of ∠W=∠X=65°