right triangles to find the exact length of:
T
30°
14 in
a) TI = in
60°
R

a) TI = 7√3 in
b) IR = 7 in
Using cosine rule:
[tex]\sf cos(x) = \dfrac{adjacent}{hypotenuse}[/tex]
[tex]\hookrightarrow \sf cos(30) = \dfrac{TI}{14}[/tex]
[tex]\hookrightarrow \sf TI = 14cos(30)[/tex]
[tex]\hookrightarrow \sf TI = 7\sqrt{3}[/tex]
Using sine rule:
[tex]\sf sin(x) = \dfrac{opposite}{hypotenuse}[/tex]
[tex]\hookrightarrow \sf sin(30) = \dfrac{IR}{14}[/tex]
[tex]\hookrightarrow \sf IR = 14sin(30)[/tex]
[tex]\hookrightarrow \sf IR = 7[/tex]