The graph of linear function g passes through the points (-7, -4) and (7, 6)

Answer:
Step-by-step explanation:
You must solve the slope-intercept form with the graph of the linear function g passing through the points.
Use the slope-intercept form.
[tex]\underline{\text{SLOPE-INTERCEPT FORM:}}[/tex]
[tex]\Longrightarrow: \sf{y=mx+b}[/tex]
Use the slope formula.
[tex]\underline{\text{SLOPE:}}[/tex]
[tex]\Longrightarrow \sf{\dfrac{y_2-y_1}{x_2-x_1} }[/tex]
(-7,-4) and (7,6)
[tex]\sf{\dfrac{6-\left(-4\right)}{7-\left(-7\right)}}[/tex]
Solve.
[tex]\sf{\dfrac{6-\left(-4\right)}{7-\left(-7\right)}=\sf{\dfrac{10}{14}=\dfrac{10\div2}{14\div2}=\dfrac{5}{7} }}[/tex]
I hope this helps. Let me know if you have any questions.