Solve for x. Then find the side lengths of the triangle. If needed, round to the nearest tenth of a foot.
(Check image)

Answer:
The sides are:
[tex]s_{1}=3x=3(6.0)=18 \:ft[/tex]
[tex]s_{2}=6x=6(6.0)=36 \:ft[/tex]
Step-by-step explanation:
We have a right triangle, so we can use the Pythagoras theorem.
[tex]40^{2}=(6x)^{2}+(3x)^{2}[/tex]
Let's solve it for x.
[tex]40^{2}=36x^{2}+9x^{2}[/tex]
[tex]1600=45x^{2}[/tex]
[tex]x^{2}=35.56 \:ft^{2}[/tex]
[tex]x=6.0 \:ft[/tex]
Therefore, the lengths will be:
First side: [tex]s_{1}=3x=3(6.0)=18 \:ft[/tex]
Second side: [tex]s_{2}=6x=6(6.0)=36 \:ft[/tex]
I hope it helps you!