Answer:
x  =  28 m
y  =  14  m
A(max)  =  392 m²
Step-by-step explanation:
Rectangular garden   A (r ) =  x * y
Let´s call x the side of the rectangle to be constructed with a rock wall, then only one x side of the rectangle will be fencing with wire.
the perimeter of the rectangle is  p  =  2*x  +  2*y   ( but in this particular case only one side x will be fencing with wire
56  =  x   +  2*y    56  -  2*y  =  x
A(r) Â = Â ( 56 Â - Â 2*y ) * y
A(y ) =  56*y  -  2*y²
Tacking derivatives on both sides of the equation we get:
A´(y )  =  56  - 4 * y     A´(y) = 0   56  -  4*y  =  0   4*y  =  56
y = Â 14 m
and x  =  56  - 2*y   =  56 - 28  = 28 m
Then dimensions of the garden:
x  =  28 m
y  =  14  m
A(max)  =  392 m²
How do we know that the area we found is a local maximum??
We find the second derivative
A´´(y)  = - 4   A´´(y)  <  0  then the function A(y) has a local maximum at y = 14 m