Respuesta :
Solution :
Calculation of the [tex]$\text{EPS}$[/tex] for both [tex]$\text{plan I}$[/tex] and [tex]$\text{plan II}$[/tex] where EBIT is 2.6 million.
                           [tex]$\text{plan I}$[/tex]            [tex]$\text{plan II}$[/tex]
EBIT                      $ 2.6 million      $ 2.6 million
Less : Interest                              $ 1.1 million
Less
PAT                      $ 2.6 million       $ 1.5 million
Earnings available           $ 2.6 million       $ 1.5 million
for share holder
No. of shares               765,000            515,00
[tex]$\text{EPS}$[/tex] = earnings available      $ 3.40               $ 2.9
for share holder/no. of
shares
Hence [tex]$\text{EPS}$[/tex] under the [tex]$\text{plan I}$[/tex] is $ 3.40 and [tex]$\text{plan II}$[/tex] is $ 2.91
Calculating the [tex]$\text{EPS}$[/tex] for both plan I and [tex]$\text{plan II}$[/tex] where EBIT is $ 3.1 million
                            [tex]$\text{plan I}$[/tex]           [tex]$\text{plan II}$[/tex]
EBIT                      $ 3.1 million      $ 3.1 million
Less : Interest                              $ 1.1 million
Less
PAT                      $ 3.1 million       $ 2.0 million
Earnings available           $3.1 million       $ 2.0 million
for share holder
No. of shares               765,000            515,00
[tex]$\text{EPS}$[/tex] = earnings available      $ 4.05               $ 3.88
for share holder/no. of
shares
Hence, [tex]$\text{EPS}$[/tex] under the [tex]$\text{plan I}$[/tex] is [tex]$\$4.05$[/tex] and [tex]$\text{plan II}$[/tex] is [tex]$\$ 3.88$[/tex]
Calculating the breakeven EBIT
When [tex]$\text{accessing}$[/tex] the relative effectiveness leverage versus equity financing companies look for the level of the EBIT where [tex]$\text{EPS}$[/tex] remains unaffected, called the EBIT-EPS breakeven point .
To calculate the EBIT-EPS breakeven point, rearranging the [tex]$\text{EPS}$[/tex] formula:
[tex]$\text{EBIT}=\text{(EPS }\times \text{no. of common shares outstanding )}+\frac{\text{preferred share dividends}}{1-\text{tax rate}}+ \text {debt interest}$[/tex] Â Â
    [tex]$=(\$4.05 \times 515,000)+0+\$1,100,000 = \$3,185,750$[/tex]
Therefore, the break even EBIT is $ 3,185,750 Â