Respuesta :
Answer:
 μ = 0.179
Explanation:
For this exercise we use the rotational equilibrium condition, where we set a reference system at the top of the ladder where it is in contact with the parent, we will assume the counterclockwise rotations as positive
     ∑ τ = 0
     W_stairs x/2 + W_man x’+ fr y - N x = 0
     fr y = -W_stairs x/2 - W_man x’ + N x
let's use trigonometry for distances
* the man up the ladder 78%
      l ’= 0.78 L
      cos 59 = x ’/ l’
      x’= 0.78 L cos 59
* the horizontal distance
      cos 59 = x / L
      x = L cos 59
* vertical distance
      sin 59 = Y / L
      y = L sin 59
we substitute
      fr L sin 59 = -W_stairs Lcos59 / 2 - W_man 0.78 L cos59 + N L cos59
      fr sin 59 = - ½ W_stairs cos 59 - 0.78 W_man cos 59 + N cos 59
      fr = ctan 59  (N - ½ W_stairs - 0.78 W_man)   (1)
Let's write the translational equilibrium equations
Y axis Â
      N -W_stairs - W_man = 0
      N = W_stairs + W_man
      N = 85 + 21.5 9.8
      N = 295.7 N
we substitute in 1
      fr = ctg 59 (295.7 - ½ 85 - 0.78 21.5 9.8)
      fr = 0.6 (295.7 - 42.5 - 164.346)
      fr = 52.89 N
the expression for the friction force is
      fr = μ N
      μ = fr / N
       μ = 52.89 / 295.7 Â
       μ = 0.179