Quadrilateral TUVW is inscribed in the circle. Find m∠T, m∠U, m∠V, m∠W.

Answer:
m∠T = 68°
m∠U = 95°
m∠V = 112°
m∠W = 85°
Step-by-step explanation:
m<V = (14z - 7)°
m<W = 10z°
m<T = 8z°
Recall that the sum of the opposite angles of a cyclic quadrilateral equals 180°.
Therefore:
(14z - 7)° + 8z° = 180°
Find z
14z - 7 + 8z = 180
22z - 7 = 180
22z = 180 + 7
22z = 187
22z/22 = 187/22
z = 8.5
Plug in the value of z in each case
✅m<V = (14z - 7)° = 14*8.5 - 7 = 112°
✅m<W = 10z° = 10*8.5 = 85°
✅m<T = 8z° = 8*8.5 = 68°
✅m<U = 180 - m<W
m<U = 180 - 85 = 95°