Calculus BC Help - Series
6. Let f be the function defined by f(x)=1x2+9.
(a) Evaluate the improper integral ∫∞3f(x) dx, or show that the integral diverges.
(b) Determine whether the series ∑n=3∞f(n) converges or diverges. State the conditions of the test used for determining convergence or divergence.
(c) Determine whether the series ∑n=1∞(−1)n(en⋅f(n))=∑n=1∞(−1)n(n2+9)en converges absolutely, converges conditionally, or diverges.


