Triangle GHI with vertices G(4, 1), H(5, -4), and I(2, -8) REFLECTED over the line y = x.

Answer:
[tex]G' = (1,4)[/tex]
[tex]H' = (-4,5)[/tex]
[tex]I = (-8,2)[/tex]
Step-by-step explanation:
Given
[tex]G = (4,1)[/tex]
[tex]H = (5,-4)[/tex]
[tex]I = (2,-8)[/tex]
Reflection: [tex]y = x[/tex]
Required
Determine the coordinates of G'H'I'
The following applies when a line A is reflected over [tex]y = x[/tex]
[tex]A = (x,y)[/tex]
[tex]A' = (y,x)[/tex]
i.e, we simply swap the positions of x and y
So, for:
[tex]G = (4,1)[/tex]
[tex]H = (5,-4)[/tex]
[tex]I = (2,-8)[/tex]
The reflections are:
[tex]G' = (1,4)[/tex]
[tex]H' = (-4,5)[/tex]
[tex]I = (-8,2)[/tex]
See attachment