Respuesta :

Answer:

[tex]W = 8.255[/tex]

[tex]L = 31.02[/tex]

Step-by-step explanation:

Let L = Length and W = Width.

So:

[tex]L = 4W - 2[/tex]

[tex]Area = 256[/tex]

Required

Find L and W

Area is calculated as:

[tex]Area = L * W[/tex]

Substitute 4W - 2 for L and 256 for Area

[tex]Area = (4W - 2) * W[/tex]

[tex]256 = (4W - 2) * W[/tex]

Open Bracket

[tex]256 = 4W^2 - 2W[/tex]

Divide through by 2

[tex]128 = 2W^2 - W[/tex]

Equate to 0

[tex]2W^2 - W - 128 = 0[/tex]

An equation [tex]aw^2 + bw + c = 0[/tex] has the roots

[tex]W = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]

Where

[tex]a = 2[/tex]   [tex]b = -1[/tex] [tex]c = -128[/tex]

So:

[tex]W = \frac{-(-1)\±\sqrt{(-1)^2 - 4*2*-128}}{2*2}[/tex]

[tex]W = \frac{1\±\sqrt{1 +1024}}{4}[/tex]

[tex]W = \frac{1\±\sqrt{1025}}{4}[/tex]

[tex]W = \frac{1\± 32.02}{4}[/tex]

[tex]W = \frac{1+ 32.02}{4}[/tex] or [tex]W = \frac{1 - 32.02}{4}[/tex]

[tex]W = \frac{33.02}{4}[/tex] or [tex]W = \frac{-31.02}{4}[/tex]

[tex]W = 8.255[/tex]  or [tex]W = -7.755[/tex]

But the dimension can not be negative.

So:

[tex]W = 8.255[/tex]

Recall:

[tex]L = 4W - 2[/tex]

[tex]L = 4 * 8.255 - 2[/tex]

[tex]L = 31.02[/tex]