Evaluate and simplify the following complex fraction.

Answer:
Thus,
[tex]\frac{\frac{2}{3}}{\frac{4}{-9}}=-\frac{3}{2}[/tex]
Step-by-step explanation:
Given the expression
[tex]\frac{\frac{2}{3}}{\frac{4}{-9}}[/tex]
[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a}{-b}=-\frac{a}{b}[/tex]
[tex]=\frac{\frac{2}{3}}{-\frac{4}{9}}[/tex]
[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a}{-b}=-\frac{a}{b}[/tex]
[tex]=-\frac{\frac{2}{3}}{\frac{4}{9}}[/tex]
[tex]\mathrm{Divide\:fractions}:\quad \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot \:d}{b\cdot \:c}[/tex]
[tex]=-\frac{2\cdot \:9}{3\cdot \:4}[/tex]
[tex]=-\frac{18}{12}[/tex]
[tex]\mathrm{Cancel\:the\:common\:factor:}\:6[/tex]
[tex]=-\frac{3}{2}[/tex]
Thus,
[tex]\frac{\frac{2}{3}}{\frac{4}{-9}}=-\frac{3}{2}[/tex]