Find the value of x in each case:
L, M ∈ KN

Answer:
x = 25
Step-by-step explanation:
m(∠PLM) + m(∠PLK) = 180° [Pair of linear angles are supplementary]
m(∠PLM) + 3x = 180°
m(∠PLM) = 180 - 3x
Similarly, m(∠PMN) + m(∠PML) = 180°
m(∠PML) = 180° - (2x + 72)°
By using the property of a triangle,
Sum of interior angle of a triangle = 180°
m(∠PML) + m(∠PLM) + m(∠LPM) = 180°
180 - (2x + 72) + 180 - (3x) + x = 180
-4x + 288 = 180
4x = 288 - 188
x = [tex]\frac{100}{4}[/tex]
x = 25