Prove that the diagonals of a parallelogram bisect each other. The midpoints are the same point, so the diagonals _____

Answer:
Below
Step-by-step explanation:
To prove that the diagonals bisect each other we should prove that they have a common point.
From the graph we notice that this point is E.
ABCD is a paralellogram, so E is the midpoint of both diagonals.
●●●●●●●●●●●●●●●●●●●●●●●●
Let's start with AC.
● A(0,0)
● C(2a+2b,2c)
● E( (2a+2b+0)/2 , (2c+0)/2)
● E ( a+b, c)
●●●●●●●●●●●●●●●●●●●●●●●●
BD:
● B(2b,2c)
● D(2a,0)
● E ( (2a+2b)/2 , 2c/2)
● E ( a+b ,c)
●●●●●●●●●●●●●●●●●●●●●●●●●
So we conclude that the diagonals bisect each others in E.