Respuesta :

Answer:

65

Step-by-step explanation:

The sum of the first 16 terms of an arithmetic progression (A.P) is 240

The sum of the next 4 terms is 220

The sum of n terms in an A.P is given by;

[tex]s_{n}[/tex] = n/2(2a + (n - 1)d)

240 = 8(2a + 15d) ... (i)

460 = 10(2a + 19d) .... (ii)

Simplifying this gives;

2a + 15d = 30 ... (i)

2a + 19d = 46 ... (ii)

Subtracting (i) from (ii) we get;

4d = 16

d (common difference) = 4

and a (first term) = (30 - 60)/ 2 = -15

The sequence upto 21 terms is here:

-15, -11, -7, -3, 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 51, 55, 59, 61, 65

So the next term (21^st term) is 65.

Answer:  a₂₁ = 65

Step-by-step explanation:

The Sum of an Arithmetic Progression is the sum of the first term plus the sum of the last term divided by 2 and multiplied by the number of terms.

[tex]a_1\ \text{is the first term}\\a_n=a_1+d(n-1)\quad \text{is the value of the nth term}\\\\[/tex]

Let's find the 16th term (n = 16)

[tex]a_{16}=a_1+d(16-1)\\\\.\quad =a_1+15d[/tex]

Now let's find the sum of the first 16 terms. This will be Equation 1:

[tex]S_{16}=\dfrac{(a_1)+(a_1+15d)}{2}\times 16=240\\\\\\.\qquad 8(2a_1+15d)=240\\\\\\.\qquad 2a_1+15d=30\qquad \leftarrow \text{Equation 1}[/tex]

************************************************************************************

Repeat what we did above for the next 4 terms (n = 17 to n = 20). This will be Equation 2:

[tex]a_{17}=a_1+d(17-1)\\\\.\quad =a_1+16d\\\\\\a_{20}=a_1+d(20-1)\\\\.\quad =a_1+19d[/tex]

[tex]S_{17-20}=\dfrac{(a_1+16d)+(a_1+19d)}{2}\times 4=220\\\\\\.\qquad 2(2a_1+35d)=220\\\\\\.\qquad 2a_1+35d=110\qquad \leftarrow \text{Equation 2}[/tex]

*********************************************************************************************

Now we have a system of equations. Solve using the Elimination Method:

2a₁ + 15d = 30   → -1(2a₁ + 15d = 30)     →    -2a₁ - 15d = -30    

2a₁ + 35d = 110  →  1(2a₁ + 35d = 110)    →     2a₁ + 35d = 110  

                                                                             20d = 80

                                                                                  d = 4

Input d = 4 into one the equations to solve for a₁:

Equation 1: 2a₁ + 15d = 30

                  2a₁ + 15(4) = 30

                    2a₁ + 60 = 30

                             2a₁ = -30

                               a₁ = -15

Given a₁ = -15 and d = 4, we can find the next term (n = 21)

[tex]a_n=a_1+d(n-1)\\\\a_{21}=-15+4(21-1)\\\\.\quad =-15+4(20)\\\\.\quad = -15+80\\\\.\quad = 65[/tex]