Answer:
4.7 kJ/kmol-K
Explanation:
Using the Debye model the specific heat capacity in kJ/kmol-K
c = 12Ļā“Nk(T/Īø)Ā³/5
where N = avogadro's number = 6.02 Ć 10Ā²Ā³ molā»Ā¹, k = 1.38 Ć 10ā»Ā²Ā³ JKā»Ā¹, T = room temperature = 298 K and Īø = Debye temperature = 2219 K Ā
Substituting these values into c we have
c = 12Ļā“Nk(T/Īø)Ā³/5 Ā
= 12Ļā“(6.02 Ć 10Ā²Ā³ molā»Ā¹)(1.38 Ć 10ā»Ā²Ā³ JKā»Ā¹)(298 K/2219 K)Ā³/5
= 9710.83(298 K/2219 K)Ā³/5
= 1942.17(0.1343)Ā³
= 4.704 J/mol-K
= 4.704 Ć 10ā»Ā³ kJ/10ā»Ā³ kmol-K
= 4.704 kJ/kmol-K
ā 4.7 kJ/kmol-K
So, the specific heat of diamond in kJ/kmol-K is 4.7 kJ/kmol-K