Respuesta :
Answer:
As x gets smaller, pointing to negative infinity, the value of p increases, pointing to positive infinity.
As x increases, pointing to positive infinity, the value of p increases, pointing to positive infinity.
Step-by-step explanation:
To find the end behaviour of a function f(x), we calculate these following limits:
[tex]\lim_{x \to +\infty} f(x)[/tex]
And
[tex]\lim_{x \to -\infty} f(x)[/tex]
At negative infinity:
[tex]\lim_{x \to -\infty} (4x^{8} - 6x^{7} + 3x^{3} - 10)[/tex]
When the variable points to infinity, we only consider the term with the highest exponent. So
[tex]\lim_{x \to -\infty} (4x^{8} - 6x^{7} + 3x^{3} - 10) = \lim_{x \to -\infty} 4x^{8} = 4*(-\infty)^{8} = \infty[/tex]
Plus infinity, because the exponent is even.
So as x gets smaller, pointing to negative infinity, the value of p increases, pointing to positive infinity.
At positive infinity:
[tex]\lim_{x \to \infty} (4x^{8} - 6x^{7} + 3x^{3} - 10) = \lim_{x \to \infty} 4x^{8} = 4*(\infty)^{8} = \infty[/tex]
As x increases, pointing to positive infinity, the value of p increases, pointing to positive infinity.
Answer:
A - As x -> infinity, p(x) -> infinity, and as x -> -infinity, p(x) -> infinity.
Step-by-step explanation: