In parts ​(a) through ​(e)​ below, mark the given statement as True or False. Justify each answer. All vectors are in set of real numbers R Superscript nℝn. a. vtimes•vequals=Bold left norm v right normvsquared2 Choose the correct answer below. A. The given statement is false. It is not possible for it to be true because vtimes•v simplifies to a ​vector, whereas Bold left norm v right normvsquared2 simplifies to a scalar. B. The given statement is true. By the definition of the length of a vector v​, Bold left norm v right normvequals=StartRoot Bold v times Bold v EndRootv•v. C. The given statement is false. By the definition of the length of a vector ​v, Bold left norm v right normvequals=vtimes•v. It follows that Bold left norm v right normvsquared2equals=​(vtimes•v​)squared2. D. The given statement is true. By the definition of the length of a vector ​v, Bold left norm v right normvequals=vtimes•v. It follows that Bold left norm v right normvsquared2equals=​(vtimes•v​)squared2.