The volume of the solid is a function of its definite integral.
The volume of the solid is: [tex]\mathbf{\frac{256}{3}\pi}[/tex]
The curve is given as:
[tex]\mathbf{x^2 + (y - 4)^2 = 16}[/tex]
Solve for x^2
[tex]\mathbf{x^2 = 16 - (y - 4)^2}[/tex]
Using the washer method, we have the following integral:
[tex]\mathbf{Volume = \int\limits^b_a \pi x^2 dy}[/tex]
The graph passes through y = 0 and y = 8.
So, we have:
[tex]\mathbf{Volume = \int\limits^8_0 \pi x^2 dy}[/tex]
Substitute [tex]\mathbf{x^2 = 16 - (y - 4)^2}[/tex]
[tex]\mathbf{Volume = \int\limits^8_0 \pi [16 - (y - 4)^2] dy}[/tex]
Rewrite as:
[tex]\mathbf{Volume = \pi\int\limits^8_0 [16 - (y - 4)^2] dy}[/tex]
Expand brackets
[tex]\mathbf{Volume = \pi\int\limits^8_0 [16 - (y^2 - 8y + 16)] dy}[/tex]
Open bracket
[tex]\mathbf{Volume = \pi\int\limits^8_0 16 - y^2 + 8y - 16\ dy}[/tex]
Evaluate like terms
[tex]\mathbf{Volume = \pi\int\limits^8_0 - y^2 + 8y \ dy}[/tex]
Integrate
[tex]\mathbf{Volume = \pi( - \frac{1}{3}y^3 + 4y^2 )|\limits^8_0}[/tex]
Expand
[tex]\mathbf{Volume = \pi[( - \frac{1}{3} \times 8^3 + 4\times 8^2 ) - ( - \frac{1}{3} \times 0^3 + 4\times 0^2 )]}[/tex]
[tex]\mathbf{Volume = \pi[( - \frac{1}{3} \times 512 + 4\times 64 ) ]}[/tex]
[tex]\mathbf{Volume = \pi[( - \frac{512}{3} + 256 ) ]}[/tex]
Simplify
[tex]\mathbf{Volume = \pi[( \frac{-512 + 256 \times 3}{3}) ]}[/tex]
[tex]\mathbf{Volume = \pi[( \frac{256}{3}) ]}[/tex]
[tex]\mathbf{Volume = \frac{256}{3}\pi}[/tex]
Hence, the volume of the solid is: [tex]\mathbf{\frac{256}{3}\pi}[/tex]
Read more about volume of solids at:
https://brainly.com/question/8752196