Respuesta :
Answer:
a) [tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
And replacing we got:
[tex] \bar X = 27.2[/tex]
b) For this case we have n =48 observations and we can calculate the median with the average between the 24th and 25th values on the dataset ordered.
20.4 20.4 20.5 21.7 22.3 23.3 23.6 23.7 23.7 23.7 Â 23.9 23.9 24.1 24.3 24.7 24.9 25.1 25.1 25.1 25.2 Â 25.3 25.6 26.1 26.1 26.4 26.5 26.7 27.1 27.1 27.4 Â 27.6 28.4 28.6 28.6 28.7 28.8 28.8 29.6 31.0 32.0 Â 32.0 32.4 32.5 32.9 33.1 34.5 38.4 44.1
For this case the median would be:
[tex] Median = \frac{26.1+26.4}{2}=26.25 \approx 26.3[/tex]
c) [tex] Mode= 23.2, 25.1[/tex]
And both with a frequency of 3 so then we have a bimodal distribution for this case
Step-by-step explanation:
For this case we have the following dataset:
23.6, 26.5, 28.6, 28.6, 23.7, 25.3, 24.9, 28.7, 26.7, 32.4, 20.4, 23.9, 32.0, 32.5, 23.7, 26.1, 21.7, 26.1, 38.4, 24.1, 20.5, 25.2, 31, 26.4, 27.1 ,25.1, 25.1, 23.7, 23.9, 32.9, 28.8, 25.6, 28.8, 28.4, 32, 27.6, 29.6, 44.1, 27.1, 24.7, 22.3, 24.3, 23.3, 27.4, 20.4, 25.1, 34.5, 33.1
Part a
We can calculate the mean with the following formula:
[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
And replacing we got:
[tex] \bar X = 27.2[/tex]
Part b
For this case we have n =48 observations and we can calculate the median with the average between the 24th and 25th values on the dataset ordered.
20.4 20.4 20.5 21.7 22.3 23.3 23.6 23.7 23.7 23.7 Â 23.9 23.9 24.1 24.3 24.7 24.9 25.1 25.1 25.1 25.2 Â 25.3 25.6 26.1 26.1 26.4 26.5 26.7 27.1 27.1 27.4 Â 27.6 28.4 28.6 28.6 28.7 28.8 28.8 29.6 31.0 32.0 Â 32.0 32.4 32.5 32.9 33.1 34.5 38.4 44.1
For this case the median would be:
[tex] Median = \frac{26.1+26.4}{2}=26.25 \approx 26.3[/tex]
Part c
For this case the mode would be:
[tex] Mode= 23.2, 25.1[/tex]
And both with a frequency of 3 so then we have a bimodal distribution for this case