A 20.0 kg rock is sliding on a rough , horizontal surface at8.00 m/s and eventually stops due to friction .The coefficient ofkinetic fricction between the rock and the surface is 0.20
what average thermal power is produced as the rock stops?

Respuesta :

Answer:

Therefore the average thermal power is = 19.61 W

Explanation:

Given that the mass of the rock = 20.0 kg

initial velocity (u) = 8.00m/s

Final velocity = 0

Kinetic fiction [tex](\mu_k)[/tex] = 0.20.

Friction force = Kinetic fiction× weight

                      =[tex]\mu_k mg[/tex]

Force = mass × acceleration

[tex]\Rightarrow acceleration =\frac{Force}{mass}[/tex]

                        [tex]=-\frac{\mu_kmg}{m}[/tex]

                        [tex]=-\mu_kg[/tex]

To find the time , we use the the following formula,

v=u+at

Here a [tex]=-\mu_kg[/tex]

[tex]\Rightarrow 0=8+(-\mu_kg)t[/tex]

[tex]\Rightarrow 0.20 \times 9.8\times t=8[/tex]

⇒t = 4.08 s

Now,

Thermal energy= work done by friction = change of kinetic energy

The change of kinetic energy

= [tex]\frac{1}{2} mu^2-\frac{1}{2} mv^2[/tex]

[tex]=\frac{1}{2}\times 20\times 8 -\frac{1}{2}\times 20\times 0[/tex]

=80 J

Thermal energy=80 J

Thermal power = Thermal energy per unit time

                          [tex]=\frac{80}{4.08}[/tex] w

                         =19.61 W

Therefore 19.61 W average thermal power is produced as the rock stops.