The number of cars to minimize the cost

Answer:
310 cars
Step-by-step explanation:
The given function that models the cost is :
[tex]c(x) = 0.4 {x}^{2} - 248x + 55514[/tex]
The function is of the form:
[tex]c(x) = a {x}^{2} + bx + c[/tex]
where a=0.4 , b=-248 and c=55,514
The minimum cost occurs at:
[tex]x = - \frac{b}{2a} [/tex]
We substitute to get:
[tex]x = - \frac{ - 248}{2 \times 0.4} [/tex]
[tex]x = 310[/tex]
Therefore 310 cars must be made to minimize cost.