please solve this question

Answer:
P (A) = 0.45
Step-by-step explanation:
The addition rule of probability states that:
[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex]
Given:
[tex]P(A\cup B) = 0.7\\P(A\cap B) = 0.1\\P(B) = 0.35[/tex]
Compute the value of P (A) as follows:
[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)\\P(A)=P(A\cup B) + P(A\cap B) - P(B)\\= 0.7 +0.1-0.35\\=0.45[/tex]
Thus, the probability of A is, P (A) = 0.45.