Answer:
a) F = 680 N, b) Â W = 215 .4 J , c) Â F = 1278.4 N
Explanation:
a) Hooke's law is
       F = k x
To find the displacement (x) let's use the elastic energy equation
      [tex]K_{e}[/tex] = ½ k x²
       k = 2 [tex]K_{e}[/tex]  / x²
       k = 2 85.0 / 0.250²
       k = 2720 N / m
We replace and look for elastic force
      F = 2720  0.250
      F = 680 N
b) The definition of work is
     W = ΔEm
     W = [tex]K_{ef}[/tex] - [tex]K_{eo}[/tex]
     W = ½ k ( [tex]x_{f}[/tex]² - x₀²)
The final distance
     [tex]x_{f}[/tex] = 0.250 +0.220
    [tex]x_{f}[/tex] = 0.4750 m
We calculate the work
     W = ½ 2720 (0.47² - 0.25²)
     W = 215 .4 J
We calculate the strength
     F = k [tex]x_{f}[/tex]
     F = 2720 0.470
     F = 1278.4 N