1.Complete the table. f(x) = e^(-x)
2. Use log 2 = a, log 3 = b to evaluate log (12).

Answer:
f(-3) = 20.08
f(3) = 0.049
log 12 = 2a + b
Step-by-step explanation:
1. Given that [tex]f(x) = e^{-x}[/tex]
Therefore, [tex]f(-3)=e^{-(-3)} = e^{3} = 20.08[/tex]
Again, [tex]f(3) = e^{-3}=0.049[/tex]
2. [tex]\log 12= \log (4 \times 3)= \log 4 + \log 3 = \log 2^{2} +\log 3 = 2\log 2 +\log 3[/tex] {Since log ab =log a + log b and log a² = 2 log a}
So, [tex]\log 12 = 2a+b[/tex] {Since log 2 =a and log 3 = b given}