Answer
given, Â
diameter of merry - go - round = 3 m Â
mass of the disk = 290 kg Â
speed of the merry- go-round = 25 rpm Â
speed = 5.6 m/s Â
mass of John = 30 kg Â
[tex]I_{disk} = \dfrac{1}{2}MR^2[/tex] Â
[tex]I_{disk} = \dfrac{1}{2}\times 290 \times 1.5^2[/tex] Â
[tex]I_{disk} = 326.25 kg.m^2[/tex] Â
initial angular momentum of the system Â
[tex]L_i = I\omega_i + mvR[/tex] Â
[tex]L_i =326.25 \times 25 \times \dfrac{2\pi}{60} + 30 \times 5.6 \times 1.5[/tex] Â
[tex]L_i =1106.12\ kg.m^2/s[/tex] Â
final angular momentum of the system Â
[tex]L_f = (I_{disk}+mR^2)\omega_{f}[/tex] Â
[tex]L_f = (326.25 + 30\times 1.5^2)\omega_{f}[/tex] Â
[tex]L_f= (393.75)\omega_{f}[/tex] Â
from conservation of angular momentum Â
[tex]L_i = L_f[/tex] Â
[tex]1106.12 = (393.75)\omega_{f}[/tex] Â
[tex]\omega_{f}=2.809 \times \dfrac{60}{2\pi}[/tex] Â
[tex]\omega_{f}=26.82\ rpm[/tex] Â
Â