Answer:
speed of the charge electric is  v = - (Eo q/m) cos t
Explanation:
The electric charge has a very small mass so it follows the oscillations of the electric field. We force ourselves on the load,
     F = q Eo sint
a) To find the velocity of the particle, let's use Newton's second law to find the acceleration and of this by integration the velocity
    F = ma
    q Eo sint = ma
    a = Eo q / m sint
    a = dv / dt
    dv = adt
    ∫ dv = ∫ a dt
    v-vo = I (Eoq / m) sin  t dt
    v- vo = Eo q / m (-cos t)
We evaluate the integral from the initial point, as the particle starts from rest Vo = 0, for t = 0
    v = - (Eo q / m) cos t
b) Kinetic energy
   Â
     K = ½ m v2
     K = ½ m (Eoq / m)²2 (sint)²
     K = ¹/₂  Eo² q² / m sin² t
c) The average kinetic energy over a period
     K = ½ m v2
     <v2> = (Eoq / m) 2 <cos2 t>
The average of cos2 t = ½, substitute and calculate
     K = ½ m (Eoq / m)²  ½
     K = ¼ Eo² q² / m