Consider △LMN.
m∠L + m∠M = °
sin(L) =
sin(M) =
I got y’all

Answer:
90°
cos(M)
cos(L)
Step-by-step explanation:
In a triangle the sum of the three angles is 180°. Here the triangle is a right angled triangle so,
∠L+∠M = 90
which can be seen by adding the angles
42°+48° = 90°
[tex]sin(L)=\frac{\text{Opposite side}}{\text{hypotenuse}}\\\Rightarrow sin (L)=\frac{MN}{ML}[/tex]
[tex]cos(M)=\frac{\text{Adjacent side}}{\text{hypotenuse}}\\\Rightarrow cos(M)=\frac{MN}{ML}[/tex]
∴[tex]\mathbf{sin(L)=cos(M)=\frac{MN}{ML}}[/tex]
[tex]sin(M)=\frac{\text{Opposite side}}{\text{hypotenuse}}\\\Rightarrow sin (M)=\frac{LN}{ML}[/tex]
[tex]cos(L)=\frac{\text{Adjacent side}}{\text{hypotenuse}}\\\Rightarrow cos(L)=\frac{LN}{ML}[/tex]
∴[tex]\mathbf{sin(M)=cos(L)=\frac{LN}{ML}}[/tex]