If mc022-1.j pg and mc022-2.j pg, what is the value of (f – g)(144)? –84 –60 0 48

Answer:
0
Step-by-step explanation:
f(x) = √(x) + 12
g(x) = 2√(x)
(f-g)(x) = √(x) + 12 - 2√(x)
(f-g)(x) = 12 - √(x)
if x = 144
(f-g)(144) = 12 - √(144) = 12 - 12 = 0
Answer:
(f-g) (144) = 0.
Step-by-step explanation:
Given : f(x) = [tex]\sqrt{x}+12[/tex] and g(x) = [tex]2\sqrt{x}[/tex] .
To find : what is the value of (f – g)(144).
Solution : We have given
By the formula : (f – g)(x) = f(x) - g(x)
(f – g)(144) = f(144) - g(144).
f(x) - g(x) = [tex]\sqrt{x} +12 -2\sqrt{x}[/tex].
(f-g) (x) = 12 - [tex]\sqrt{x}[/tex].
(f-g) (144) = 12 - [tex]\sqrt{144}[/tex].
(f-g) (144) = 12 -12
(f-g) (144) = 0.
Therefore, (f-g) (144) = 0.